Wellcome at the Julius Wolff Institute

Latest Publications

Märdian S, Schmölz W, Schaser KD, Duda GN, Heyland M.
Interfragmentary lag screw fixation in locking plate constructs increases stiffness in simple fracture patterns.
Clin Biomech (Bristol, Avon). 2015 Jun 12. pii: S0268-0033(15)00172-2. doi: 10.1016/j.clinbiomech.2015.06.008. [Epub ahead of print]

The aim of the current biomechanical cadaver study was to quantify the influence of an additional plate-independent lag screw on construct stiffness in simple fracture models at the distal femur stabilised with a locking plate. Plate constructs with interfragmentary lag screw reveal similar axial and torsional stiffness values compared to intact bone as opposed to bridging plate constructs that showed significantly lower stiffness for both loading conditions.

Figure: Throughout all tests all distal screw options of the plate were used (a). In order to avoid embedding of the plate at the distal and proximal end modelling clay was used as shown (b). The prepared specimen was then tested according to the test protocol. The picture (c) shows the set-up of the biomechanical testing (*: insertion point of the lag screw at the anterior cortex). A schematic illustration of the different test configurations is additionally shown (d).

Pobloth AM, Duda GN, Giesecke MT, Dienelt A, Schwabe P.
High-dose recombinant human bone morphogenetic protein-2 impacts histological and biomechanical properties of a cervical spine fusion segment: results from a sheep model.
J Tissue Eng Regen Med. 2015 Jun 5. doi: 10.1002/term.2049. [Epub ahead of print]

Due to the limited analysis methods in patients, a preclinical anterior fusion model (ACDF) in sheep was chosen to analysis of the consequences of a high-dose rhBMP-2 application on the tissue and the biomechanical properties of a cervical spine fusion segment. Despite qualitative alteration of the trabecular bone structure within the fusion site, the massive anterior heterotopic bone formation led to a substantial increase in mechanical stiffness compared to the autograft group.

Forien JB, Fleck C, Cloetens P, Duda GN, Fratzl P, Zolotoyabko E, Zaslansky P.
Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin.
Nano Lett. 2015 May 26. [Epub ahead of print]

The tough bulk of dentin in teeth supports enamel, creating cutting and grinding biostructures with superior failure resistance that is not fully understood. We show the nanostructural link between mineral compression and known damage propagation trajectories in dentin, suggesting a previously overlooked toughening mechanism.

Cipitria A, Wagermaier W, Zaslansky P, Schell H, Reichert J, Fratzl P, Hutmacher D, Duda G.
BMP delivery complements the guiding effect of scaffold architecture without altering bone microstructure in critical-sized long bone defects: A multiscale analysis.
Acta Biomater. 2015 May 21. pii: S1742-7061(15)00239-1. doi: 10.1016/j.actbio.2015.05.015.

The micro- and nanostructure of BMP-mediated fast-forming bone has not been compared with slower forming bone, although it is known that bone microstructure at different length scales determines its function. We show in a sheep model that a structured scaffold directs tissue organization through structural guidance and load transfer, while BMP stimulation accelerates bone formation without altering the microstructure at different length scales.

Minkwitz

Minkwitz S, Faßbender M, Kronbach Z, Wildemann B.
Longitudinal Analysis of Osteogenic and Angiogenic Signaling Factors in Healing Models Mimicking Atrophic and Hypertrophic Non-Unions in Rats.
PLoS One. 2015 Apr 24;10(4):e0124217. doi: 10.1371/journal.pone.0124217. eCollection 2015.

We analyzed three different clinically relevant bone healing models to get a better understanding of the molecular changes which are associated with soft tissue damage and failure in revascularization resulting in a hypertrophic and atrophic non-union.

All other publications you will find here

Upcoming Event at Berlin-Brandenburg School for Regenerative Therapies

Research Unit "Regeneration in Aged Individuals"

Unter der Projektleitung von Prof. Georg Duda hat die Deutsche Forschungsgemeinschaft e.V. den Antrag einer Forschergruppe mit dem Arbeitstitel "Regeneration in Aged Individuals: Using bone healing as a model system to characterize regeneration under compromised conditions" für eine Laufzeit von drei Jahren bewilligt.

Die Forschergruppe bezeichnet sich dabei als ein enges Arbeitsbündnis mehrerer Wissenschaftler, die gemeinsam eine Forschungsaufgabe bearbeiten. Neben dem Julius Wolff Institut sind innerhalb der CharitéUniversitätsmedizin Berlin auch die Institute der Medizinischen Genetik und Humangenetik sowie der Medizinischen Immunologie und das Centrum für Muskuloskeletale Chirurgie und das Berlin-Brandenburger Centrum für Regenerative Therapien beteiligt. Weitere Einrichtungen sind das Institut für Biochemie der Freien Universität Berlin und das Deutsches Rheuma-Forschungszentrum Berlin.  Lesen Sie mehr