Mechanobiology for Spinal Fusion

Univ.-Prof. biol. hum. Hendrik Schmidt

Learn more about our research regarding mechanobiology for spinal fusion.

You are here:

Research on the mechanical regulation of lumbar spinal fusion

Cage-Design with Small Ring Diameter
Cage-Design with Large Ring Diameter
Cage-Design with Trapezoidal Cross-Section
Cage-Design with two T-Sections

The degeneration of the intervertebral disc is one of the most common causes of specific lower back pain. Due to multiple reasons, degeneration can lead to segmental instability. Anterior inter-corporeal spinal fusion is currently the most effective surgical treatment to correct segmental instability. In most cases, a spinal cage in combination with autogenous cancellous bone is used to achieve a permanent bony fusion of one or more vertebral segments. One of the most common complications of spinal fusion is nonunion, often due to so-called "stress shielding". Thereby, the insertion of a rigid implant causes a reduction in the mechanical stimulus required for bone formation in the fusion region. This can result in early implant failure, loss of stability or malposition of the implant and pain; associated with considerable health risks and the necessity for re-operation.

The process of bone formation during inter-corporeal spinal fusion is poorly understood. Therefore, the main goal of our research in this area is to investigate the mechanical regulation of lumbar spinal fusion following spondylodesis. For this purpose, finite element models of lumbar motion segments will be developed, that incorporate the mechanical and biological factors influencing the fusion process. This knowledge will allow us to identify factors contributing to delayed healing or nonunions in some patients.

In addition, cages will be designed and optimized for the lumbar spine, which will significantly enhance skeletal fixation and reduce the time required for complete bony fusion compared to clinically available implants. This should reduce the risk of non-unions and revision surgeries as well as the associated health care costs.


Computational Analyses of Different Intervertebral Cages for Lumbar Spinal Fusion

Maxim Bashkuev, Sara Checa, Sergio Postigo, Georg Duda, Hendrik Schmidt
Journal of Biomechanics 2015; DOI:10.1016/j.jbiomech.2015.06.024, 2.75 Impact Factor
Show abstract

Investigation of different cage designs and mechano-regulation algorithms in the lumbar interbody fusion process–A Finite Element Analysis

Sergio Postigo, Hendrik Schmidt, Antonius Rohlmann, Michael Putzier, Antonio Simón, Georg Duda, Sara Checa
Journal of Biomechanics 2014; DOI:10.1016/j.jbiomech.2014.02.005, 2.75 Impact Factor
Show abstract

Barbara Schiller

Secretariat Prof. Hendrik Schmidt