Computergestützte Mechanobiologie

Die Gewebe des Bewegungsapparates sind exquisit designed und verfügen über hervorragende mechanische Eigenschaften. Die Gewebe sind auch in der Lage, sich an wechselnde mechanische Bedingungen anzupassen. Die Gruppe Computational Mechanobiology konzentriert sich darauf, diese beiden spannenden Aspekte zu verstehen. Mit Hilfe von Computermodellierungstechniken versuchen wir, das mechanische Verhalten von Geweben und ihre adaptive und regenerative Reaktion auf mechanische Reize in den verschiedenen Zeit- und Längenskalen zu verstehen.

Sie befinden sich hier:

Ausgewählte Publikationen

Ergebnisse filtern
  • Borgiani E, Figge C, Kruck B, Willie BM, Duda GN, Checa S

    Age-related changes in the mechanical regulation of bone healing are explained by altered cellular mechanoresponse


    We used a combined in vivo/in silico approach to investigate age-related alterations in the mechanical regulation of bone healing and identified the relative impact of altered cellular function on tissue patterns during the regenerative cascade. To modulate the mechanical environment, femoral osteotomies in adult and elderly mice were stabilized using either a rigid or a semirigid external fixator and the course of healing was evaluated using histomorphometric and microCT analyses at 7, 14 and 21 days post-surgery. Computer models were developed to investigate the influence of the local mechanical environment within the callus on tissue formation patterns.

    J Bone Miner Res 2019; doi: 10.1002/jbmr.3801

  • Cilla M, Borgiani E, Martinez J, Duda GN, Checa S

    Machine learning techniques for the optimization of joint replacements: Application to a short-stem hip implant


    The aim of this project was to investigate if the geometry of a commercial short stem hip prosthesis can be further optimized to reduce stress shielding effects and achieve better short-stemmed implant performance. To reach this aim, the potential of machine learning techniques combined with parametric Finite Element analysis was used. The selected implant geometrical parameters were: total stem length (L), thickness in the lateral (R1) and medial (R2) and the distance between the implant neck and the central stem surface (D). The results show that the total stem length was not the only parameter playing a role in stress shielding. An optimized implant should aim for a decreased stem length and a reduced length of the surface in contact with the bone.

    PLoS One 2017; 12(9):e0183755.


Publikationen

Ergebnisse 1 bis 10 von insgesamt 47


Ergebnisse 1 bis 10 von insgesamt 47